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Introduction

This post concerns the derivations of an equation of motion for matter in an infinite, uniform, 
Newtonian universe. The derivations are presented in a couple of serious academic lectures 
available on the internet. Both lecture say that Newton's assumption that in his universe the forces 
of gravity would be symmetric, so there would be no net gravitational force on any of the matter 
was in fact false.

The first derivation, which I shall call the shell approach, is part of a course in cosmology presented
by Leonard Susskind at the Stanford University. The second video is presented by Alan Guth of 
M.I.T. In this lecture he rejects the shell approach for reasons similar to mine, although he uses a 
slightly different approach and and also does not cover a crucial part of Susskind justification for 
the approach. He also presents two alternative approaches to the derivation based on Gauss's Law 
and the Laplacian – both of which I also find highly suspect.

The Suskind Lecture is at :-

https://www.youtube.com/watch?v=P-medYaqVak

with the key section between timestamps 0:30:00 and 0:49:00.

The Guth Lecture is at :-

https://ocw.mit.edu/courses/physics/8-286-the-early-universe-fall-2013/video-
lectures/lecture-5-cosmological-redshift-and-the-dynamics-of-homogeneous-expansion/

With the key sections between timestamps 0:50:00 and 0:59:00.

I would recommend that you watch these sections before reading this document.

The Shell Approach

This is the approach used by Susskind in his lecture at timestamp 0:30:00. The idea it to start with 
an infinite universe with a uniform density. This density only needs to be uniform on the large scale,
but to make things clearer I will treat it as uniform at the smallest scale.
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Within this space we chose an arbitrary reference point for the observer, 'O', with coordinate system 
centred on himself. 

In the derivation in the Susskind video the coordinates are in terms of a scale factor 'a'. This is an 
unnecessary complication so we will stick to actual distances.

We will now take a target region of space that is small compared to its distance, 'R', from the 
observer.  We will label this target 'T'.
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In order to calculate the gravitational effect of the rest of the universe on the target mass we will 
divide the universe into a number of regions. The first region will be a large sphere centred on the 
observer and with a radius equal to the distance from the observer to the target mass, 'R'.

The gravitational force 'F' of this sphere on the test mass is given by the standard Newtonian 
formula for a mass on the surface of a sphere :-

Equation 1

This force will always be directly towards the observer.

The mass of the sphere, 'M',  will be given by the volume times the density:-

Equation 2

The test mass can be derived in the same way, but as mass of the test matter will remain constant we
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will leave the mass as 'm' ( it will be divided out soon anyway ).

So the force on the test mass will be :-

Equation 3

Which will reduce to :-

Equation 4

The mass for the rest of the universe will be divided up into a series of concentric shells centred on 
the observer. If we take one such shell as shown :-

The gravitational force on any point within a hollow sphere is actually zero. I will not prove this 
here but you can find proofs on-line. So if we sum up all the shells outside the radius R we will get 
nothing. So the only gravitational force on the target mass will be from the central sphere - which 
we have already derived as equation 4.

Finally, for compatibility with Susskind we want the equation of motion by calculating the 
acceleration 'a'. This is done using 'a = F / m'. Giving :-

Equation 5

Susskind does thing it terms of a scale factor, for which he confusing uses 'a', which effectively 
replaces 'R'.
Thus the acceleration will be directly towards the observer and the magnitude will be proportional 
to the distance from the observer to the test mass element. This suggests that the universe will 
collapse towards the observer
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What is the Problem?
All the above physics is correct, so why do I dispute the conclusion? First let us consider the system
from the point of view of another observer in the same inertial reference frame.

The test particle is now being pulled in a totally different direction. We could keep doing this for 
any number of observers and they will all deduce that the test particle should be accelerating 
towards them. When one of the students challenged Susskind with an argument like this he 
dismissed to objection saying that changing the observer would introduce pseudo-forces, but this 
would only arise in the second observe were accelerating – which he is not.

At this point you may be thinking of the the Hubble expansion of the universe, where all observers 
see themselves as the centre of expansion. But in that case each observer is moving relative to the 
other observers and the reference frame is moving with them. In our case the different observes are 
all static relative to each other. Also there is no reason for them to be moving. If we set the system 
up to be initially at rest then even if there were an acceleration it would take time for the speed to 
build up.

Where did the Analysis go Wrong?
The error in the reasoning is the infinite sum for the shells. We can consider a shell as two 
hemispheres pulling in opposite directions with equal force. The hemispheres for all shells will be 
the same – the mass will be proportional to R squared but the inverse square law will cancel this 
out. We can look at the final sum ( with appropriate scaling ) as :-
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1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 . . .

We can group terms as follows :-

( 1 – 1 ) + ( 1 – 1 ) + ( 1 – 1 ) + ( 1 – 1 ) + ( 1 – 1 ) + ( 1 – 1 ) . . . 

This will reduce to :-

0 + 0 + 0 + 0 + 0 + 0 . . . 

Which will give zero.

However we could also group terms as :-

1 + ( – 1 + 1 ) + (– 1 + 1 ) + ( – 1 + 1 ) + (– 1 + 1 ) + ( – 1 + 1 ) + ( – 1 . . .

This will reduce to :-

1 + 0 + 0 + 0 + 0 + 0 . . . 

Which will equal one.

You could also start by picking out any number of 1s then start pairing all the -1s in turn with all the
unmatched 1s. This will yield any number you like.

This is effectively what you are doing when you extract a core of the space then start adding shells 
that are asymmetric relative to the target mass.

If you watch Guth's lecture from time 0:59:00 you will see another way of explaining the 
discrepancy.

The Gauss's Law Approach

In Guth's lecture, at time 0:48:00, an alternative approach is introduced. This involves Gauss's Law 
of Gravitation, which is analogous to his law of electrostatics.

Gauss's Law of Gravitation can be expressed as follows :-

Equation 6

This states that the net gravitational flux over the surface of a region of space depends only upon the
matter within that region. Any matter outside the region will contribute to the flux flowing into the 
region at some point but this will be balanced by extra flux flowing out of the region at another 
point. Here I am using 'gravitational flux' as dot product of field strength and area, in analogy to 
electric flux. I am not going to go into the details here as there are multiple resources on the internet
that can explain it far better than I can.

As any volume of space contains some matter then there must be a non zero net flux into the region.

6



So there must be some non-zero gravitational field at some point. Thus there must be a force on 
some matter, meaning that the system is not perfectly gravitationally balanced.

What is the Problem?
Again it is relatively easy to show that this does not work but harder to show where the error has 
occurred.

If we choose some arbitrary point in space as the centre of a sphere of radius R then the total 
integral for the flux will be the gravitational acceleration times the surface area of the sphere :-

Equation 7

This will reduce to :-

Equation 8

From symmetry we see that this must be uniformly spread around the surface and pointing towards 
the centre of the sphere ( the external contributions around the surface will also be symmetrical and 
thus be zero at all points – because the total contribution will be zero ).

If we now choose another sphere that touches the first sphere but does not intersect then field at the 
surface of this second sphere must be in the opposite direction and have a magnitude determined by 
the radius of the second sphere. The field at a given point cannot have two different magnitudes and
directions.
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Another way to look at it is in terms of homogeneity. If there is a field it must be the same strength 
and direction everywhere thus the whole universe would move in the same direction rather than 
collapsing.

Where did the Analysis go Wrong?
To understand my idea about why the Gaussian approach failed we need to go back to the original 
electrostatic version of Gauss's Law. In electrostatics there are two types of charge – positive and 
negative. Any line of an electric field starts at a positive charge and ends at a negative charge.

Any line in the above diagram that disappears on the left will reappear on the right. The universe 
seems to be more or less electrically neutral so all sources of electric field have a sink. Thus all field
lines can go somewhere. When we extend the approach to the gravitational field there are no 
“negative masses” to act as sinks for the field. This is not a problem if the matter field of the 
universe is finite and the field lines can go off to an infinite distance beyond any matter and be 
quietly forgotten.
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The trouble is when the matter field is infinite and there is nowhere to act as a sink for the field 
lines. Thus the field lines generated within one of the enclosed regions of space cannot escape and 
hence the integral of the flux out must on average be zero and for a uniform matter distribution it 
will always be zero for any closed surface. So there would be no Gauss's Law of Gravity in an 
infinite Newtonian Universe. It is also interesting to consider an infinite universe and removing all 
the negative charges: would the electrostatic version of Gauss's law still hold?

Laplace's Equation Approach

This is the alternative approach that Guth introduces in his lecture at timestamp 0:54:40. He gives 
the equation as :-

Equation 9

Some sources call the the Poisson Equation of the Poisson-Laplace equation ( in this case I think 
Poisson-Laplace would be appropriate given how fishy I find Guth's analysis ).

In the above the left hand side expands as shown :-

Equation 10

In these equations the symbol φ  is the gravitational potential.

Guth's arguments is that if φ  is constant everywhere then the second derivative of the potential is 
zero everywhere and in all directions. Thus the Laplacian would be zero. The Laplacian being zero 
would mean that the mass density must be zero. So an infinite universe with a non-zero mass 
density must have a potential that varies, and as the gradient of the potential gives the net 
gravitational force at that point this means that there must be a net gravitational force everywhere.

What is the Problem?
The underlying specification of the uniform universe implies that there is no variation in 
gravitational potential as any variation would violate the assumption of homogeneity. If there were 
a gradient in the potential field this would be a vector and thus have a direction, thus violating 
isotropy.
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Where did the Analysis go Wrong?
The problem is once again the lack of empty space outside the matter field. For a finite universe the 
zero potential is at a point infinitely far from the matter, any all potentials are negative relative to 
this. There is a conflict between the Laplace's Equation and the uniformity of the potential field, so 
Something must give. Guth assumes that the uniformity needs to go, I believe it is Laplace's 
equation that must be abandoned. Laplace's Equation is derived from the underlying laws of gravity
with some implicit assumptions – such as a meaningful zero point far away from the matter. This 
assumption does not hold for an infinite matter field.

Conclusion
So, no matter which approach you take, I still think that Newton was correct in his assumptions 
about the stability of his universe – for the ideal case. In real life the uniformity will not be perfect, 
so there will be local contractions, but not a uniform global contraction.
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